A Multiple-Layer Flexible Mesh Template Matching Method for Non- rigid Registration between a Pelvis Model and CT Images
نویسندگان
چکیده
A robust non-rigid registration method has been developed to deform a pelvis model to match with anatomical structures in a CT image. A statistical volumetric model is constructed from a collection of training CT datasets. The model is represented as a hierarchical tetrahedral mesh equipped with embedded Bernstein polynomial density functions on the barycentric coordinates of each tetrahedron. The prior information of both shape properties and density properties is incorporated in the model. The non-rigid registration process consists of three stages: affine transformation, global deformation, and local deformation. A multiple-layer flexible mesh template matching method is developed to adjust the location of each vertex on the model to achieve an optimal match with the anatomical structure. The mesh template is retrieved directly from the tetrahedral mesh structure, with multiple-layer structure for different scales of anatomical features and flexible searching sphere for robust template matching. An adaptive deformation focus strategy is adopted to gradually deform each vertex to its matched destination. Several constraints are applied to guarantee the smoothness and continuity. A “leave-one-out” validation showed that the method can achieve about 94% volume overlap and 5.5% density error between the registered model and the ground truth model.
منابع مشابه
Non-Rigid Registration And Correspondence Finding In Medical Image Analysis Using Multiple-Layer Flexible Mesh Template Matching
In this paper we present a novel technique for non-rigid medical image registration and correspondence finding based on a multiple-layer flexible mesh template matching technique. A statistical anatomical model is built in the form of a tetrahedral mesh, which incorporates both shape and density properties of the anatomical structure. After the affine transformation and global deformation of th...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملStandard edge detection algorithms versus conventional auto-contouring used for a three-dimensional rigid CT-CT matching
Background: To reduce uncertainties of patient positioning, the Computerized Tomography (CT) images acquired at the treatment planning time can be compared with those images obtained during radiation dose delivery. This can be followed during dose delivery procedure as Image Guided radiotherapy (IGRT) to verify the prescribed radiation dose delivery to the target as well as to monitor ...
متن کاملتحلیل حرکت جریانات دریائی در تصاویر حرارتی سطح آب دریا
Oceanographic images obtained from environmental satellites by a wide range of sensors allow characterizing natural phenomena through different physical measurements. For instance Sea Surface Temperature (SST) images, altimetry data and ocean color data can be used for characterizing currents and vortex structures in the ocean. The purpose of this thesis is to derive a relatively complete frame...
متن کامل